Same calculation efficiency but different internal noise for luminance- and contrast-modulated stimuli detection.
نویسندگان
چکیده
There is no consensus on whether luminance-modulated (LM) and contrast-modulated (CM) stimuli are processed by common or separate mechanisms. To investigate this, the sensitivity variations to these stimuli are generally compared as a function of different parameters (e.g., sensitivity as a function of the spatial or temporal window sizes) and similar properties have been observed. The present study targets the sensitivity difference between LM and CM stimuli processing. Therefore, instead of studying the variation of sensitivity in different conditions, we propose to decompose the sensitivities in internal equivalent noise (IEN) and calculation efficiency (CE) to evaluate at which processing level the two mechanisms differ. For each stimulus type, the IEN and CE of four observers were evaluated using three different carriers (plaid, checkerboard, and binary noise). No significant CE differences were noted in all six conditions (3 carriers x 2 modulation types), but important differences were found between the IEN of the two stimulus types. These data support the hypothesis that the two pathways are initially separate and that the two stimuli may be treated by common mechanisms at a later processing stage. Based on ideal observer analysis, pre-rectification internal noise could explain the difference of IEN between LM and CM stimuli detection when using binary noise as a carrier but not when using a plaid or a checkerboard. We conclude that a suboptimal rectification process causes higher IEN for CM stimuli detection compared with LM stimuli detection and that the intrinsic noise of the binary carrier had a greater impact on the IEN than the suboptimal rectification.
منابع مشابه
First- and second-order motion mechanisms are distinct at low but common at high temporal frequencies.
There is no consensus on the type of nonlinearity enabling motion processing of second-order stimuli. Some authors suggest that a nonlinearity specifically applied to second-order stimuli prior to motion processing (e.g., rectification process) recovers the spatial structure of the signal permitting subsequent first-order motion analyses (e.g., filter-rectify-filter model). Others suggest that ...
متن کاملWhy is second-order vision less efficient than first-order vision?
Research has shown that the sensitivity to second-order modulations of carrier contrast is lower than that to first-order luminance modulations stimuli. We sought to compare the efficiency of processing first- and second-order information. Employing a phase-discrimination paradigm we found that when humans were given sufficient a priori information of signal parameters they detected both lumina...
متن کاملVery few exclusive percepts for contrast-modulated stimuli during binocular rivalry
Binocular rivalry properties for contrast-modulated (CM) gratings were examined to gain insight into their locus of processing. Two orthogonally orientated gratings were presented, one to each eye. Perceptual change rates, proportions of exclusivity and mixed percepts, and mean durations were calculated. Stimuli were noiseless luminance-defined (L), luminance-modulated noise (LM) and contrast-m...
متن کاملSpatial frequency tuned covariance channels for red–green and luminance-modulated gratings: psychophysical data from human infants
This study concerns the spatial-frequency-tuned channels underlying infants' contrast sensitivity functions (CSFs) for red-green chromatic stimuli, and their relationship to the channels underlying infants' CSFs for luminance-modulated stimuli. Behavioral (forced-choice preferential-looking) techniques and stationary stimuli were used. In experiment 1. contrast thresholds were measured in 4- an...
متن کاملLateral interactions across space reveal links between processing streams for luminance-modulated and contrast-modulated stimuli
Foveal detection thresholds for luminance-modulated (LM) and contrast-modulated (CM) blobs in the presence of fixed modulation, laterally placed noise blobs (separations of 0-6 degrees ) were measured in four observers with normal vision. Detection thresholds measured for LM blobs placed between highly visible LM flankers (111) and for CM blobs placed between highly visible CM flankers (222) pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vision
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2006